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Abstract

Spectral-based image endmember extraction methods hinge on the ability to discriminate between pixels based on spectral characteristics
alone. Endmembers with distinct spectral features (high spectral contrast) are easy to select, whereas those with minimal unique spectral
information (low spectral contrast) are more problematic. Spectral contrast, however, is dependent on the endmember assemblage, such that as the
assemblage changes so does the “relative” spectral contrast of each endmember to all other endmembers. It is then possible for an endmember to
have low spectral contrast with respect to the full image, but have high spectral contrast within a subset of the image. The spatial–spectral
endmember extraction tool (SSEE) works by analyzing a scene in parts (subsets), such that we increase the spectral contrast of low contrast
endmembers, thus improving the potential for these endmembers to be selected. The SSEE method comprises three main steps: 1) application of
singular value decomposition (SVD) to determine a set of basis vectors that describe most of the spectral variance for subsets of the image; 2)
projection of the full image data set onto the locally defined basis vectors to determine a set of candidate endmember pixels; and, 3) imposing
spatial constraints for averaging spectrally similar endmembers, allowing for separation of endmembers that are spectrally similar, but spatially
independent. The SSEE method is applied to two real hyperspectral data sets to demonstrate the effects of imposing spatial constraints on the
selection of endmembers. The results show that the SSEE method is an effective approach to extracting image endmembers. Specific
improvements include the extraction of physically meaningful, low contrast endmembers that occupy unique image regions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Spectral mixing is a problem inherent to remote sensing data
and results in few image pixel spectra representing “pure”
targets (Settle & Drake, 1993). Linear spectral mixture analysis
(SMA) (Adams et al., 1986, 1993) is designed to address the
problem of mixed pixels. It assumes that the pixel-to-pixel
variability in a scene results from varying proportions of
spectral endmembers. The spectrum of a mixed pixel can then
be calculated as a linear combination of the endmember spectra
weighted by the area coverage of each endmember within the
pixel, if the scattering and absorption of electromagnetic
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radiation is derived from a single component on the surface
(Keshava & Mustard, 2002).

Image endmembers (referred to simply as endmembers
hence forth) are pixel spectra that lie at the vertices of the image
simplex in n-dimensional space (Fig. 1A). The extraction of
endmembers from an image has benefits over the use of spectra
measured in the field or laboratory. Library and field spectra are
rarely acquired under the same conditions as airborne or satellite
data; and they may not adequately represent all important
endmembers. On the other hand field and laboratory spectra are
usually collected from surfaces one wants to map, and thus, they
have direct physical meaning for mapping purposes. Imagery
may provide similarly meaningful endmembers that can be
considered “pure”, or relatively “pure” spectra, meaning that
little or no mixing with other endmembers has occurred within a
given pixel.
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Fig. 1. 2-dimensional scatterplot of endmember assemblage A, B, and C (A);
and, B, C, and D (B) located at the vertices of the simplex. In (A) all other pixels
(black dots) can be represented as a linear mixture of the 3 endmembers with
pixel M an equal mixture of A, B, and C. The relative spectral contrast for C
changes for the 2 assemblages, whereby C has an equivalent contrast with A and
B in assemblage 1 and a lower contrast in assemblage 2. B has high contrast in
assemblage 2, but has equal contrast with A and C in asssemblage 1.
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To obtain accurate unmixing results the endmembers selec-
ted must be representative of surface components that occur in
relatively pure form (Adams & Gillespie, 2006). For this reason
much literature has focused on the subject of endmember
extraction and includes methods such as the pixel purity index
(PPI) (Boardman, 1993; Boardman et al., 1995), manual
endmember selection tool (MEST) (Bateson & Curtiss, 1996),
N-FINDR (Winter, 1999), optical real-time adaptive spectral
identification system (ORASIS) (Bowles et al., 1995), the
endmember optimization method of Tompkins et al. (1997),
convex cone analysis (CCA) (Ifarraguerri & Chang, 1999),
iterative error analysis (IEA) (Neville et al., 1999), automated
morphological endmember extraction (AMEE) (Plaza et al.,
2002), iterated constrained endmembers (ICE) (Berman et al.,
2004), and vertex component analysis (VCA) (Nascimento &
Dias, 2005). With the exception of AMEE, the above methods
select endmembers by discriminating between pixels using their
spectral characteristics. This is done independently of neigh-
boring pixels, the spatial distribution of endmembers, and the
characteristic spatial mixing relationships between endmembers
(e.g. do endmembers mix).

This paper presents a spatial–spectral endmember extrac-
tion algorithm (SSEE) that makes use of the spectral and
spatial characteristics of image pixels during the search for
image endmembers. The spatial characteristics are used to
increase the spectral contrast between spectrally similar, but
spatially independent endmembers, thus improving the poten-
tial of finding these endmembers. We also impose spatial
constraints when averaging spectrally similar pixels to preserve
similar but distinct endmembers that occupy unique image
regions. The output is an image endmember library, where the
individual endmembers are defined based on spectral and
spatial characteristics. Section 2 gives a brief overview of three
relevant endmember extraction methods, two of which were
used to generate comparative results. This section is followed
by a detailed description of the SSEE algorithm (Section 3)
and two demonstrations using airborne hyperspectral data
(Section 4).

2. PPI, IEA, and AMEE algorithms

By far the most commonly used endmember extraction tool
is PPI, which searches for vertices that define the data volume in
n-dimensional space (n=number of bands). Commonly the first
step of PPI is to apply a principal component analysis (PCA) or
minimum noise fraction (MNF) (Green et al., 1988) to reduce
the dimensionality of the data set. MNF is similar to PCA in that
involves two cascading PCA transformations, where the first
estimates a noise covariance matrix used to decorrelate and
rescale the noise in the data. The next is a standard PCA of the
noise-reduced data. The assumption here is that the image
endmembers lie within the first few principal component axes,
whereas the remaining axes are related to noise. However, some
image components have weak signals and contribute little
energy to the eigenvalues, and thus, determining the cutoff
threshold between the eigenvalues caused by signal and noise is
problematic (Chang & Du, 2004).

PPI is semi-automated and obtains endmember candidate
pixels by projecting the transformed data onto a high number of
randomly oriented vectors (k) in n-dimensional space. Those
pixels that lie at either end of a given random vector are
assigned a “hit”. The total number of hits are tallied for each
pixel, for all random vectors. Pixels that receive more hits than a
set cutoff threshold (t) are considered candidate endmember
pixels, or “pure” pixels. This cutoff threshold is commonly a
fixed empirical value (e.g. 2 or 10), or based on statistical
parameters, such as the mean hits value (Plaza et al., 2004). The
candidate endmember pixels are then loaded into a n-dimension
visualization tool, such that the user can visually identify the
extreme pixels in the data cloud. This last step requires a
significant degree of human intervention from an experienced
operator. PPI is particularly sensitive to the input parameters k
and t (Chang & Plaza, 2006). Owing to the fact that the vectors
are randomly generated, results may not be repeatable. In order
to obtain results that are close to repeatable, PPI requires k to be



289D.M. Rogge et al. / Remote Sensing of Environment 110 (2007) 287–303
sufficiently large (e.g. 104), such that the number of endmember
candidate pixels selected levels off asymptotically as a function
of the number of vectors used.

IEA is implemented in the Imaging Spectrometer Data
Analysis System (ISDAS) (Staenz et al., 1998), and is based on
the residual error image generated when a data set is unmixed
using a Weighted Nonnegative Least Squares approach
(WNNLS) (Haskell & Hanson, 1981). This method has been
used in endmember comparative studies (e.g. Plaza et al., 2004;
Winter & Winter, 2000) and was shown to be a robust extrac-
tion tool. IEA works by performing a series of recursive cons-
trained unmixing operations on the image, such that the
residual error is minimized. The mean spectrum of the scene is
used as the starting endmember to initialize the unmixing
process. The residual error image is essentially a distance mea-
surement in n-dimensional space between the mean spectrum
and each pixel spectrum in the image. Pixels within a pre-
determined spectral angle that encompass the largest errors form
a new endmember, with the mean spectrum discarded. This
process is repeated using the new endmember to find additional
endmembers, but unlike the mean spectrum which was dis-
carded, each new endmember is added to the existing end-
member set until the number of endmembers specified by
the user is reached or until a specified average error tolerance
condition is met. The main drawback to IEA is that it is com-
putationally intensive, specifically as the number of end-
members required increases.

AMEE is significantly different from spectral-based methods
as it integrates spatial information in order to extract end-
members from an image. AMEE runs on the full data cube with
no dimensional reduction. The algorithm begins by searching
spatial neighborhoods around each pixel in the image for the
most spectrally pure and mostly highly mixed pixel. This task is
accomplished using the mathematical morphology operators
dilation and erosion respectively. Each spectrally pure pixel is
assigned an “eccentricity” value, which is calculated as the
spectral angle distance between the most spectrally pure and
mostly highly mixed pixel for the given spatial neighborhood.
This process is repeated iteratively for larger spatial neighbor-
hoods up to a maximum size that is pre-determined. At each
iteration the “eccentricity” values of the selected pixels are
Fig. 2. (A) Image region showing three endmembers (i, j, and k), where mixing occ
square in (A). (B) 2-dimensional scatter-plot where endmembers i and j are difficult to
for better discrimination of endmembers i and j. Dotted lines in (B), (C), and (D) ar
updated. The final endmember set is obtained by applying a
threshold to the resulting greyscale “eccentricity” image. There
are some limitations to AMEE, particularly a significant
increase in processing time as the maximum size of the spatial
neighborhood becomes large; and, the algorithm's ability to
select only one pixel per spatial neighborhood (Plaza et al.,
2002). However, AMEE has been shown to produce results that
are comparable to or better than other endmember extraction
methods (Plaza et al., 2002, 2004).

3. Description of the spatial–spectral endmember
extraction (SSEE) algorithm

The selection of endmembers becomes more problematic as
their spectral contrast approaches the detection limits of the
given sensor (e.g. SNR). Improving the spectral contrast
between pixels in an image can be accomplished using
spectral-based methods such as transforms (e.g. PCA, MNF)
(Adams & Gillespie, 2006), derivative analysis (Tsai & Philpot,
1998), and normalization (Clark & Roush, 1984). Masking can
also be used to improve spectral contrast by removing image
components that dominate the spectral variance of the data
resulting in a relative increase in spectral contrast for the
remaining image components. However, masking will only be
effective in cases where spectral mixing is minimal, which is not
commonly the case for natural environments. Masking does
illustrate that spectral contrast is variable in an image depending
on the spatial neighborhoods, where for each spatial neighbor-
hood the assemblage of endmembers may change.

Fig. 1 provides such an illustration showcasing endmember C
as observed in two different spatial neighborhoods, each with a
distinct endmember assemblage. In case 1, C is equivalently
distinct from both A and B and can be considered to have high
spectral contrast relative to A and B. However, in case 2, C is
spectrally similar to D, and thus has lower relative spectral
contrast compared with case 1. By conducting the image
extraction on image subsets we can take advantage of the spatial
characteristics of each endmember, which may result in a given
endmember having higher spectral contrast in a specific image
subset, thus facilitating its extraction. Fig. 2 illustrates a geological
example where two lithologic units are spectrally similar, but
urs between i and k, j and k, but not i and j. Spatial groups shown with dotted
discriminate. (C) and (D) show scatter-plots for the two spatial groups allowing
e the eigenvectors related to the largest eigenvalue for each distribution.



Fig. 3. SSEE Step 1: (A) Image region showing three image components (i, j, and k). (B) Four image subsets. (C) Compiled basis vectors from all subsets shown in (B).
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spatially independent. Obtaining endmembers for each lithologic
unit can be improved by analysing image subsets.

Averaging pixels that lie near the vertices of a simplex is
common practice to generate representative endmember spectra
(e.g. in IEA). However, spectral-based endmember extraction
methods do not take into account the spatial relationships between
the pixels. Thus, spectrally similar pixels that are spatially
independent can be averaged together (e.g. Fig. 2 endmember i
and j) to provide a representative endmember. By constraining the
averaging process to include only spatially associated pixels it
should be possible to reduce spectral contamination of spatially
unrelated but spectrally similar endmembers.

The SSEE algorithm described below comprises four steps:
1) application of singular value decomposition (SVD) to
determine a set of eigenvectors that describe most of the
spectral variance of image subsets; 2) projection of the entire
image data onto the eigenvectors to determine a set of candidate
endmember pixels; 3) use of spatial constraints to combine and
average spectrally similar candidate endmember pixels; and, 4)
listing of candidate endmembers in order of spectral similarity.

3.1. SSEE Step 1

Step 1 makes use of SVD, which is very efficient in
obtaining a set of eigenvectors that explain most of the
spectral variability of a given scene (Healey & Slater, 1999;
Thai et al., 1999). SVD, along with PCA and MNF, are
projection techniques commonly used in remote sensing. SVD
Fig. 4. SSEE Step 2: (A) Image region showing three image components (i, j, and k)
eigenvectors derived from Step 1. (D) Spatial distribution of candidate endmember
was implemented in SSEE because it can provide a solution
even in the case of highly spectrally correlated data where a
“singularity” problem can be encountered, whereas PCA may
fail (Jolliffe, 1986; Press et al., 1992). MNF requires a
reliable estimate of the noise covariance matrix that can be
difficult to obtain for small subsets.

SSEE obtains a set of candidate endmember pixels by
applying SVD to subsets of an image (Fig. 3B and C). The
SSEE algorithm in its present form makes use of subsets that are
equal in size, are square, and do not overlap. Thus, subset size is
defined as the number of pixels along its side dimension. The
SVD is calculated using the SVDC routine in IDL™ 6.1
(Interactive Data Language), which is based on the routine
svdcmp described in Press et al. (1992). For SSEE, eigenvectors
that account for 99% of the total spectral variance (s=SVD
threshold value) are retained from each subset and compiled
into one vector file. These vectors will likely be related to the
local high contrast endmembers. For each subset the minimum
number of vectors is set to 2, whereas the maximum is defined
by the threshold value s (99%). The minimum size of the subset
that can be used is defined by the square root of the number of
bands in the image data, whereas the maximum size is that of
the entire image (assuming the image is also square).

3.2. SSEE Step 2

In step 2, the entire image data (Fig. 4B) is projected onto the
compiled vector set with the pixels that lie at either extreme of
. (B) Image data in 2-D space. (C) Projection of entire image data onto 1 of the
pixels.
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the vectors retained (Fig. 4C). These pixels (Fig. 4D) represent
the candidate pixel endmember set, which is used in Step 3.

3.3. SSEE Step 3

Step 3 analyzes the spatial and spectral characteristics of the
candidate endmember set to average spectrally similar end-
member candidates that are spatially related. Step 3 scans the
image with a sliding window of size equal to the subset size
used in step 1. Step 3 begins by comparing each candidate
endmember pixel to all other pixels within the window centered
on the pixel of interest. Pixels within the window that are
similar, based on a minimum spectral angle or root mean square
error (RMS) (Fig. 5B), become candidate endmember pixels.
This process is analogous to retaining more than 1 pixel at either
extreme of the eigenvectors. However, using this approach we
constrain the number of pixels based on both spectral and
spatial similarity. RMS is primarily used for very low
reflectance signatures such as water, because the minimum
spectral angle is commonly exceeded when candidate water
spectra are compared.

Step 3 continues by averaging each of the candidate
endmember pixels with all other endmember candidates
within the window (Fig. 5C–F). The averaging process is
repeated for x number of iterations, with the objective to: 1)
reduce the effects of noise; and, 2) find image pixels that are
spectrally similar, but spatially related within the window
Fig. 5. SSEE Step 3: (A) Candidate endmember pixels showing spatial distribution
Spatial averaging process using a sliding window centered on each updated candidat
First iteration of spatial–spectral averaging. Averaged pixels shown as solid lines, with
1 and 3, but not 4, which is averaged with pixel 3. (F) Second iteration of spatial–spec
3, thus, condensing the spectral cluster further. Continued iterations will compress end
distinct spectral endmembers. Note that for endmember k, only two pixels are avera
(Fig. 5). Multiple iterations allow the algorithm to compare
and average pixels that are farther than the window size, but
are related by other candidate pixels that lie spatially between
them (Fig. 5C–F). This iterative approach allows the user to
compress endmember clusters reducing their variance (Fig.
5F). The end product is a set of endmembers that are defined
both spectrally and spatially, and take into account local
spectral variance.

3.4. SSEE Step 4

The endmember set derived from Step 3 is reordered based
on spectral angle. The first endmember in the existing library
is assigned as the first spectrum in the new reordered list.
This spectrum is compared to all other endmembers, with the
most similar endmember (lowest spectral angle) assigned the
next position in the new reordered list. This process is
repeated recursively until all spectra have been ordered.
Owing to the iterative spatial averaging process in Step 3 a
number of the reordered spectra are duplicates (spectrally
similar based on the minimum spectral angle and RMS) (e.g.
Fig. 5F). The endmembers retain their image coordinates. The
reordered list allows the user to quickly view and group
endmember spectra into endmember classes that are spectrally
and spatially similar. As one scrolls down the reordered list,
spectra will be spectrally similar, but they can be grouped into
endmember classes based on their similar spatial coordinates.
with respect to units i, j, and k. (B) Updated candidate endmember pixels. (C)
e endmember pixel. (D) Spectral distribution in 2-D space for bands x and y. (E)
original pixels shown as dashed circles. Pixel number 2 (see C) is averaged with

tral averaging of pixel 2, which now takes into account the influence of pixel 4 on
members i and j into clusters with negligible variance, which now represent two
ged as the third pixel is outside the averaging window.



Fig. 6. Subset region of Airborne Visible InfraRed Imaging Spectrometer
(AVIRIS) hyperspectral data over Cuprite, Nevada (RGB True color exported as
greyscale).
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This grouping process could be fully automated. However, we
have left this as a manual process to allow a user to input
their expert knowledge of a given region.

4. Data sets and evaluation methodology

Two evaluations of the SSEE algorithm were conducted with
hyperspectral imagery. The first evaluation is for data from
Cuprite Nevada, and is designed to demonstrate the character-
istics of SSEE using different spatial subset and averaging
window sizes. We examine the link between subset size,
eigenvectors retained, and the resulting number of endmembers
selected from the image. The second evaluation is for data of
Baffin Island, northern Canada. We examine the endmembers
related to bedrock geology obtained by SSEE, IEA and PPI in
the context of field spectra and also examine unmixing results in
the context of the spatial distribution of the endmembers. A
comparison with AMEE was not conducted as the algorithm is
not readily available.

4.1. Cuprite data and evaluation methodology

The Cuprite imagery was acquired on June 19th, 1997 by the
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS
(Green et al., 1998)) which has 224 channels covering the
0.37 to 2.51 μm spectral range with an average band Full Width
Half Maximum of∼10 nm and a Ground Instantaneous Field of
View of∼20 m. Of the 224 atmospherically corrected channels,
we use 167 after removal of channels associated with H2O and
OH absorption features near 1.4 and 1.9 μm. The Cuprite area is
arid with limited vegetation cover, and has excellent rock
exposure comprising alteration zones characterized by the
occurrence of key indicator minerals. For this evaluation we use
a 200×200 pixel subset that is centered over the eastern
hydrothermal alteration zone (Fig. 6). Within this subset region
the following minerals have been validated in the field as
occurring in high abundance as documented in Swayze et al.
(1992) and Clark et al. (2003): alunite (known variations),
chalcedony (OH-quartz), kaolinite (known variations), Na-
montmorillonite, and buddingtonite. Minerals that occur in
lower abundances and as mixtures include: jarosite, hematite,
goethite, and smectite/muscovite (Clark et al., 2003).

We evaluate SSEE with subset sizes of 20, 50, 100 and the
entire image size of 200. For the entire image size SSEE
becomes a spectral-based endmember extraction tool with no
spatial constraints. At subset sizes of 20, 50, and 100, s is set
to 99%. For the entire image s is also set to 99%, but
threshold values of 99.9% and 99.99% are also used. This is
done in order to demonstrate that retaining additional
eigenvectors, by using a higher s threshold, is not equivalent
to obtaining additional eigenvectors from multiple subsets.
Spatial averaging is constrained to a window size equal to the
subset size used to obtain the eigenvectors. For updating and
averaging candidate pixels the spectral angle is set to 1.0° and
the RMS is set to 0.001 based on reflectance scaled from 0–
1.0. The number of spatial–spectral averaging iterations is set
to 5.
4.2. Baffin Island data and evaluation methodology

Airborne hyperspectral data (∼3.5×7 km; 500×1000
pixels) were acquired with the Probe I sensor, which
comprises 128 channels from 0.446–2.543 μm with an
average band Full Width Half Maximum of ∼15 nm and a
Ground Instantaneous Field of View of ∼7 m. The data were
converted from digital numbers (DN) to radiance and
atmospherically corrected at the Canada Centre for Remote
Sensing. Conversion to radiance made use of a vicarious
calibration developed by Secker et al. (1991), where
calibration coefficients were derived from flat-field targets
acquired at the Iqualuit airport (see Fig. 7) concurrently with
the overflight. The radiance data was atmospherically
corrected using MODTRAN 4 (Berk et al., 1999) and a flat
field correction (SMILE, Neville et al., 2003) applied to
correct for spectral line curvature. A number of the 128
channels available were not used (874–991, 1082–1171,
1271–1537, 1755–2073, and 2465–2543 nm) for this
analysis owing to atmospheric water-absorption and excessive
noise. No additional preprocessing (e.g. smoothing filter) was
applied to the remaining 86 bands.

This region comprises surfaces with very disparate spectral
properties such as snow-ice, water, vegetation, lichen and rock
units. Within each class of surface material, the spectral contrast
can be relatively low. The majority of geological spectral
endmembers are defined by mineral assemblages that comprise
the various rock types in the area, and not by the occurrence of a
dominating mineral.

Field sampling and collection of spectra took place along
traverses oriented perpendicular to the dominant structural and
stratigraphic trends in order to obtain a good representation of
the various rock units within the study area (Fig. 7). The



Fig. 7. Regional geology of south-western Baffin Island and enlargement of local geology of the study area (1:100000) (modified from St-Onge et al., 1999).
Hyperspectral data shown at far right (RGB True color exported as greyscale) with field locations shown as white circles. Note only the area above the dotted line was
used in this study.
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spectra were acquired in early July, 2001, with a portable
ASD® field spectrometer that has 2151 bands covering the
0.35–2.50 μm spectral range. A total of 217 spectral
measurements were acquired during the daylight hours of
∼10 am–4 pm (weather dependent) for 56 of 188 sites
visited, some of which lie outside, but proximal to the study
area, and are representative of the geology shown in Fig. 10.
A Spectralon® (Labsphere, Inc.) (99% reflectance) white
reference was use for standardization, with each measurement
taken at ∼50 cm above the ground using an 8 degree field of
view. Each spectrum saved was an average of 10 measure-
ments. Multiple measurements were taken at each site for
fresh, weathered, polished, and partially to fully lichen coated
rock surfaces. Rock samples returned to the laboratory were
also measured using the portable ASD® field spectrometer
with a contact probe attachment, which has its own internal
light source.

To evaluate SSEE we compared the endmembers extracted
with IEA and PPI to determine whether or not SSEE extracted
equivalent endmembers and unique endmembers of signifi-
cance. For PPI we use only the automated part, because the final
steps of PPI require a high degree of human intervention.
Endmember candidates determined using different values of k
and t are compared with those derived from IEA and SSEE. It is
noted here that an automated version of PPI, referred to as Fast
Iterative Pixel Purity Index (FIPPI), has recently been presented
by Chang and Plaza (2006). However, this method is not yet
widely available to the community and was not implemented
here.

The next test is a comparison with bedrock spectra
acquired in the field and from samples returned to the labo-
ratory. This comparison allows us to test if the unique SSEE
endmembers are physically meaningful. Finally, linear
unmixing is applied to the image using the endmembers
derived from SSEE to determine if the unique endmembers
extracted by SSEE show physically meaningful spatial
distribution. In this paper we unmix the image using the
iterative spectral unmixing analysis (ISMA) approach of
Rogge et al. (2006), which is designed to unmix each pixel
using an optimal per-pixel endmember set.

For this test the subset size was set to 25. Other parameters
for this test include: 1) s=99%; 2) a spatial averaging window
size equal to the subset size; 3) the spectral angle is set to 1.0°
and the RMS is set to 0.001 based on reflectance scaled from 0–
1.0; and, 4) the number of spatial–spectral averaging iterations
is set to 10.

For this study the PPI algorithm was written using IDL™,
within the ENVI™ environment. Prior to endmember
extraction an MNF transform was applied to the data, where
MNF bands with an eigenvalue N1 (% of loading) were re-
tained (27 bands of a total of 84). The number of extreme
pixels at the ends of the random vectors that are assigned a hit
is set to 1. We followed the guidelines of Chang and Plaza
(2006) who recommended the use of 10,000 random vectors.
For purposes discussed later, PPI was also applied with k
equal to the number of vectors generated by SSEE. Cutoff
thresholds (t) of 1, 2, and 5 were tested. IEA was implemented
using ISDAS, with the number of endmembers extracted from
the imagery set to 30 (default value). The maximum number
of pixels (m) within an angle (θ) that are subsequently
averaged and assigned as an endmember were set to the
default parameters (m=10 and θ=2.5°).



Fig. 8. Endmember spectra derived from SSEE using a subset size of 20×20 and
an s value of 0.01. Refer to Table 1 for endmember abbreviations.
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5. Results

5.1. Cuprite

Table 1 shows that as the subset size decreases the total
number of endmembers selected increases; the number of
vectors increases; the number of candidate endmember pixels
increases; and, the number of updated candidate pixels
increases. However, with smaller subsets the processing time
decreases significantly, which is primarily controlled by the
SVD process. Thus, the largest number of interpretable
geological endmembers is found using the smallest subset
size, which also requires the minimum processing time. Table 1
also shows the effect of using different values of s for the entire
image data (200×200). With a larger s value the number of
eigenvectors retained increases, which increases the number of
endmembers selected. This, however, is at the expense of more
candidate pixels to filter through and greater processing time.
The SSEE algorithm was halted using an s value of 99.99% as
the number of candidate and updated candidate pixels made the
process impractical.

Examination of Table 1 shows that the number of candidate
pixels is less than the number of vectors using subsets of 20,
50, and 100. This is because many of the vectors from adjacent
subsets are redundant. However, if we use the entire image data
and use a higher s value, the number of candidate pixels is
Table 1
Result details for demonstration 1: Cuprite data

Subset size

200×200 200×200

s (SVD threshold) 0.0001 0.001
SSEE Step 1
# of vectors 87 14
SSEE Step 2
# of candidate pixels 144 23
SSEE Step 3
# of updated candidate pixels 23,145 299
# of unique candidate pixels a Processing 18
SSEE Step 4 Halted
# of endmembers b 8
Processing time c (s) 856

alu d

cha
kao

bud

kao-hem

alu-geo-jar

uknA
uknB

a No. of unique candidate endmember pixels after iterative spatial averaging. Re
window is=subset size used to compile top eigenvectors, excluding the full image (
b Derived from the unique candidate endmember pixels.
c Time for the SSEE algorithm using the IDL code.
d Mineral abbreviations: alu—alunite; cha—chalcadony; kao—kaolinite; mon—m

jarosite; geo—goethite; mus—muscovite; uknA—unknown A; uknB—unknown B
much greater than the number of vectors. In this case each
vector is orthogonal, and thus, the projected data returns more
candidate pixels. When using spatial constraints more vectors
are retained, many of which are redundant, but some are
important vectors related to signal that improve the potential of
200×200 100×100 50×50 20×20

0.01 0.01 0.01 0.01

4 16 63 356

8 13 26 55

82 231 390 732
7 11 20 32

7 8 10 12
702 687 403 167
alu alu alu alu
cha cha cha cha
kao kao kao

mon
bud bud bud bud

kaoB kaoB
kao-hem kao-hem kao-hem kao-hem

alu-hem alu-hem
alu-geo-jar alu-geo-jar
mus-hem mus-hem mus-hem

uknA uknA uknA uknA
uknB uknB uknB uknB

lates only to candidate pixels not updated candidate pixels. Spatial averaging
200×200) which uses no spatial constraints.

ontmorillonite; bud—buddingtonite; kaoB—kaolinite B; hem—hematite; jar—
.
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obtaining additional endmembers. Unlike the orthogonal
vectors obtained using the entire image many of the vectors
retained using spatial constraints will not be orthogonal.

Fig. 8 shows the twelve endmembers derived using a subset
size of 20. Ten were labeled as pure minerals or mixtures of
minerals based on known mineral absorption features. Two
endmembers do not show diagnostic absorption features, but
differ in their broad overall shape (continuum). The AVIRIS
data set was unmixed using these endmembers as inputs to the
Fig. 9. Fractional abundance maps for the 12 endmembers derived from SSEE usin
black — 0% abundance; white — N75% abundance.
ISMA approach of Rogge et al. (2006). Fig. 9 shows the
resulting fractional abundance maps. Each endmember defines
distinctive spatial regions that are visually consistent with the
maps presented by Clark et al. (2003).

5.2. Baffin Island

The total number of vectors compiled using a subset size of
25 was 2184. From these, 148 endmember candidate pixels
g a subset size of 20×20 and an s value of 0.01. Abundance scale linear with
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were extracted, of which 7 were noisy and left out (e.g. 141
total no. of pixels in Table 2). Following the spatial averaging
procedure 28 of the 148 candidate endmember pixels were
exact duplicates. The averaging procedure also results in many
of the remaining candidate pixels showing minimal spectral
difference, further reducing the number of unique end-
members and allowing the user to quickly group the spectra
into endmember classes.

From the reordered library 30 endmembers were deter-
mined based on spectral and spatial characteristics (Table 2),
including 2 water, 7 snow, 2 vegetation, 2 lichen, 4 lichen-
rock mixtures, and 13 rocks (Fig. 10). Fig. 10 also shows the
equivalent IEA endmembers. Of the 30 endmembers, IEA
obtained representative spectra for 18 (note 2 IEA endmember
spectra were noisy and removed). Thus, SSEE extracted 12
unique endmembers, some of which showed only subtle
spectral differences, but are considered unique because they
are spatially independent (e.g. endmembers 22 and 23; and,
29 and 30).
Table 2
Endmember classes derived from SSEE and IEA candidate endmember spectra and

Endmember Name a IEAb SSEEb

25×25
PPI t
k=10

Class

EM 1 Water 1 1 2 ⁎

EM 2 Water 2 2 ⁎

EM 3 Snow 1 2 10 ⁎

EM 4 Snow 2 3 4 ⁎

EM 5 Snow 3 1 5 ⁎

EM 6 Snow 4 2 12 ⁎

EM 7 Snow 5 2 4 ⁎

EM 8 Snow 6 1 13 ⁎

EM 9 Snow 7 2 14 ⁎

EM 10 Vegetation 1 2 11 ⁎

EM 11 Vegetation 2 3 16 ⁎

EM 12 Lichen 1 1 6 ⁎

EM 13 Lichen 2 6 ⁎

EM 14 Lichen-rock 1 2 ⁎

EM 15 Lichen-rock 2 2 4 ⁎

EM 16 Lichen-rock 3 1 2 ⁎

EM 17 Lichen-rock 4 2 ⁎

EM 18 (rock 1) Quartzite 1 ⁎

EM 19 (rock 2) Metased(Al–OH) 1 ⁎

EM 20 (rock 3) Metased(Fe, Al–OH) 2 ⁎

EM 21 (rock 4) Qtz-rich granite 1 ⁎

EM 22 (rock 5) Carbonate 1 1 4 ⁎

EM 23 (rock 6) Carbonate 2 1 ⁎

EM 24 (rock 7) Metased(Fe, Al–OH) 1 3 ⁎

EM 25 (rock 8) Metasediment 4 ⁎

EM 26 (rock 9) Varnish 1 2 ⁎

EM 27 (rock 10) Fe-oxide/hydroxide 1 1
EM 28 (rock 11) Vegetation mixture 1 ⁎

EM 29 (rock 12) Peridotite 1 1 2 ⁎

EM 30 (rock 13) Peridotite 2 3 ⁎

Total no.
of classes 18 30 29
of pixels 141 865
a Rock name based on work by Rogge et al. (submitted for publication) which incl

and economic significance of the rock units found in the entire hyperspectral data s
b Number represents the number of spectra extracted that can be grouped into the
c ⁎ indicates that at least 1 PPI candidate endmember spectra includes a reasonab
Using the 865 candidate endmember pixels derived from
PPI with k=10,000 and t=1, 29 of the 30 SSEE endmembers
were accounted for (Table 2). However, this number falls to
24 if t=5 (266 total candidate endmember pixels). When the
equivalent number of random vectors derived by SSEE (2184)
are used, 28 of the 30 endmembers were accounted for using
t=1. For t=5 this number falls to 15. It is interesting to note
that the majority of unique SSEE endmembers are part of the
lichen, lichen-rock and rock endmembers, which have low
overall spectral contrast. These results show that SSEE is
effective at extracting a more extensive endmember list than
either IEA or PPI, especially as t increases. However, to
assess whether or not the unique SSEE endmembers are
physically realistic we conduct a comparison with field and
laboratory spectra collected in the region.

Fig. 11 shows 1 lichen, 2 lichen-rocks, and 11 of the rock
endmembers with the best matching field and laboratory
spectra. Those in Table 2 not in Fig. 11 were left out because
they are not related to bedrock geology (e.g. varnish) or did
PPI representative spectra for different k and t

=1 c

000
PPI t=2
k=10000

PPI t=5
k=10000

PPI t=1
k=2184

PPI t=2
k=2184

PPI t=5
k=2184

⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎
⁎ ⁎
⁎ ⁎ ⁎
⁎ ⁎
⁎ ⁎
⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎
⁎ ⁎ ⁎ ⁎ ⁎

29 24 28 22 15
623 266 489 209 88

udes a more detailed discussion of the spectral identification, spatial distribution,
hown in Fig. 7.
given endmember class.
le representative spectra of the SSEE/IEA derived endmember.
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not have good spectral matches (lichen 2, lichen-rocks 1 and
2). The lack of spectral matches for lichen 2, and lichen-rocks
1 and 2, may be attributed to incomplete sampling. The
endmembers are represented by a single averaged spectrum
derived from those shown in Fig. 10. The matching criteria
are based first on spectral angle, which highlights similar
Fig. 10. Thirty endmember classes derived from the SSEE endmember candidate l
available.
spectra, followed by a visual inspection to determine the best
matches. For a good match the focus was on the broad overall
shape (continuum) and the location of diagnostic absorption
features, rather than total amplitude.

Examination of the spectral matches in Fig. 11 show that
lichen endmembers 1, and lichen-rocks 3 and 4; and the rock
ibrary spectra (solid line) and equivalent IEA endmember (dotted line), when



Fig. 10 (continued).
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endmembers 1, 2, 3, 4, 5, 7, 8, 10, and 12 show good
correspondence with field spectra. Of these, rock endmembers
1, 2, 3, 4, 8, and 13 were not selected by IEA or PPI using
t=5 and k=2184. The best spectral matches for rocks 6 and
13 are the same as for rocks 5 and 12 respectively, which
may indicate that these differences are not significant, or that
spectral representations of rocks 6 and 13 were missed in the
field. For this reason, the unmixing results were checked to
see if these endmembers showed physically meaningful
spatial distribution. Fig. 12 shows the fractional abundance
maps for rocks 5, 6, 12, and 13; and for lichen-rocks 3 and 4.
Analysis of these maps show that rocks 5 and 6 occur locally
together, but also in spatially distinctive regions. Where they
do occur together locally they are spatially separated (see
zoom window in Fig. 12). Rocks 12 and 13 define spatially
distinctive regions, although the spatial extent of rock 13 is



Fig. 11. SSEE rock and lichen-rock endmember classes (solid line) with best matching field spectra.

299D.M. Rogge et al. / Remote Sensing of Environment 110 (2007) 287–303
limited. The fractional abundance maps for lichen-rocks 3 and
4 are also included here as the endmembers are spectrally
similar. These two endmembers have some overlap, but for
the most part define spatially continuous regions that are
distinct. This indicates that although the two endmembers
appear to be rock–lichen mixtures, they include enough
unique spectral information that they map out unique spatial
regions.
6. Discussion

6.1. SSEE parameters, processing speed and performance

For SSEE there are a number of input parameters, which
affect both processing speed and performance. The 2 key
parameters are subset size and s (SVD threshold value). The
actual subset size used will depend on the characteristics of



Fig. 12. Fractional abundance maps for rocks 5, 6, 12, and 13; and, lichen-rocks 3 and 4. For rocks 5, 6, and 13 boxes highlight occurrences. Note high abundance is
given as black (N75% abundance), whereas low abundance is white (0% abundance). This is necessary to visualize the sparse occurrences of certain rock endmembers.
Small boxes are used to highlight areas of sparse spatial coverage. Larger box insert for maps of rocks 5 and 6 show enlargement of localized spatial distribution across
one outcrop.
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the image, particularly the spectral contrast of the end-
members and their spatial distribution. The degree of
homogeneity in the scene is also a factor in determining
subset size. Larger subsets can be used in cases where
endmembers are distributed as large homogeneous regions.
For more complex scenes, smaller subsets are required. It
may be possible to apply methods such as semi-variograms
to help determine the appropriate subset size. If a scene
contains only high contrast endmembers there is likely
minimal benefit to using SSEE. In addition, SSEE will not
be useful in cases where low contrast endmembers are
always spatially associated, with respect to the subset size.
The real benefit of SSEE comes when spectrally similar
endmembers are spatially independent. This is evident with
rock endmembers 5 and 6, 12 and 13, and lichen-rocks 3
and 4 as shown in Fig. 12.
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Choosing an appropriate subset size also effects processing
speed. When using smaller subsets the number of vectors
retained increases, such that projecting the data onto these
vectors becomes the controlling factor with respect to proces-
sing speed. Subset sizes larger than 50 significantly reduce
processing speed because of the processing time necessary to
obtain vectors via SVD. With larger subset sizes we also reduce
our ability to obtain vectors that may be related to low contrast
endmembers, therefore reducing performance. Thus, the user
must balance information gained by reducing the subset size,
knowing that many of the additional vectors are redundant.
Based on work in this study we found that a subset size of 20–
25 pixels was effective. For this analysis subsets did not
overlap. However, it may be advantageous to use overlapping
subsets, such that each pixel is compared equally to pixels in all
directions. Subsets could also be of different sizes and shapes
defined by the spatial complexity across the scene (e.g. quadtree
decomposition). It may also be useful to preprocess the vectors
to remove redundant vectors. However, this must done with care
such that important vectors related to subtle spectral variations
are not removed.

The second key parameter that affects performance is the
parameter s. Values set higher than 99% resulted in additional
vectors, many of which are related to noise and only increased
computational time. Values set lower than 99% result in fewer
vectors per subset (minimum of 2 in SSEE), which reduce our
ability to select low contrast endmembers. Changing s can
evidently have significant effects on the results, thus more work
is required to determine an s value that works best for all data
sets.

The size of the spatial averaging window was set to be equal
to the subset size. This was done originally for consistency.
However, for larger subsets an equivalent spatial averaging
window had a negative impact on the methodology, in that
spatially independent endmembers that are spectrally similar
may be averaged. In addition, a larger window can increase the
number of updated candidate pixels, which can make spatial
averaging impractical (see Table 1).

The last two parameters used in SSEE are spectral angle and
RMS, which are used to update and average the candidate
endmember pixels. For this project we used a spectral angle of
1° and an RMS value equal to 0.001 based on reflectance scaled
from 0–1.0. Higher spectral angle and RMS values result in a
larger updated candidate endmember list, but also may lead to
the loss of the subtle spectral features that define a low contrast
endmember. For this reason we chose to keep these two values
to a minimum. Note that RMS is primarily used for dark pixels,
such as water.

6.2. Comparison with PPI

Of the endmember extraction methods described in Section
2, SSEE has most in common with PPI, even though AMEE
also uses spatial information. The similarity between SSEE and
PPI relates to the projection of the data onto vectors and
retaining those pixels that lie at either end of the vectors. The
primary benefit of SSEE compared with PPI is the use of non-
random vectors. First and foremost is the fact that SSEE is
repeatable. Secondly, fewer vectors are required. In addition,
many of the vectors derived from adjacent subsets are
redundant, so the actual number of important vectors is less
than the total compiled and results in a smaller number of
candidate pixels that the user must work with, compared with
PPI. This is evident from the results, where for an equivalent
number of random vectors a total of 489 candidate pixels were
selected using PPI, as opposed to 148 for SSEE. For PPI, the use
of random vectors results in more spectral variability among
candidate pixels. For SSEE, vectors are only retained for each
subset region if they explain a significant percentage of the
spectral variance. This reduces the possibility of retaining
vectors related to noise, and in turn, selecting pixels that are
noisy.

Because of the high number and spectral variability of the
PPI endmembers this requires a great deal of human
intervention to derive a final endmember set. For SSEE
human intervention is limited to grouping the non-duplicate
endmember candidates. This step is simplified by reordering the
list based on spectral similarity, and by using the spatial
coordinates of each candidate endmember pixel.

Steps 1 and 2 of the SSEE methodology make use of
projecting the data volume onto vectors to derive a set of
candidate endmember pixels, as used with PPI. However, the
key difference is that for SSEE the vectors are not random, but
eigenvectors derived from image subsets. In doing so, the SSEE
methodology by-passes the difficulty of setting an adequate
threshold of eigenvalues encountered when analyzing an entire
image by retaining only the top few vectors related to signal for
each subset region. This approach makes use of the fact that
eigenvectors are dependent on the scene statistics, and are thus,
spatially dependent.

6.3. Local vectors versus local candidate pixels

It is possible to use the local vectors to select a set of local
candidate pixels for each subset region. However, the key
drawback of this approach is the necessity to filter through a
much larger number of candidate pixels to determine an
endmember set for the full image. These local candidate pixels
may also be partial mixtures, which complicate the selection of
endmembers. To account for this problem we have chosen
instead to use local vectors, rather than local endmembers.
Then, in turn, scale up to the full image by projecting the data
onto the compiled vector set.

7. Conclusions

The spatial–spectral endmember extraction tool (SSEE)
presented in this paper makes primary use of spatial information
to: 1) select local eigenvectors that relate to both high and low
contrast endmembers within the scene; and, 2) to average only
spectrally similar endmembers that are also spatially related.
This results in a higher number of candidate endmembers that
are defined both spectrally and spatially. The evaluation of
SSEE has shown that the method is capable of extracting unique
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endmembers with subtle spectral variability that are not selected
by other well known spectral-based methods. These unique
endmembers were shown to be spectrally significant owing to
comparisons with field spectra and through physically realistic
spatial distribution.

The two key parameters that affect the processing speed and
performance of SSEE are subset size and s (SVD threshold
value). For the two evaluations used in this paper a subset size
of 20 to 25 pixels squared and an s value of 99% were shown to
be effective at selecting both high and low contrast end-
members. The use of local eigenvectors, rather than local
endmembers, allows SSEE to retain local information, but also
apply that information at the scale of the full image. The use of
spatial subsets to select eigenvectors also allows SSEE to by-
pass the problems associated with selecting a cutoff threshold
between eigenvectors caused by signal versus those related to
noise. However, the usefulness of SSEE is dependent on the
spectral contrast and spatial distribution of the endmembers
within the scene. Thus, SSEE is particularly beneficial for
extracting spectrally similar endmembers that are also spatially
independent. Overall the SSEE method is quick, repeatable, and
requires minimal user input.
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